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ABSTRACT: The dependency of minority charge carrier lifetime values at grain boundaries in multicrystalline 
silicon of different qualities on the grain boundary type after POCl3 gettering and/or firing of SiNx:H layers deposited 
by plasma enhanced chemical vapor deposition is analyzed. A new method to determine the coincidence site lattice 
grain boundary types on large scale is combined with spatially resolved lifetime-calibrated photoluminescence 
measurements and mappings of the interstitial iron concentration. Lifetime contrast values are calculated. A broader 
statistics than in former investigations is generated by this approach. 
Based on broad statistics, a dependency of the efficacy of all applied processes on the grain boundary type is shown -: 
higher coincidence site lattice indexes correlate with a decrease of median lifetime values after all applied processes. 
Hydrogenation of grain boundaries is found to be more effective in cleaner samples. The lifetime contrast values are 
dependent on the degree of contamination of the multicrystalline silicon material. In less contaminated samples they 
rather decrease after the processes, whereas in standard solar-grade material they increase after POCl3 diffusion and 
decrease again after subsequent hydrogenation. No correlation with the interstitial iron concentration could be found. 
Keywords: multicrystalline silicon, grain boundaries, minority charge carrier lifetime, grain boundary type 
 

 
1 INTRODUCTION 
 
 In comparison to monocrystalline silicon wafers, mc-
Si wafer quality is lowered by higher impurity 
concentration, grain boundaries and dislocations. As a 
consequence, the minority charge carrier lifetimes in as-
cut wafers are lower. During standard solar cell 
production processes like POCl3 diffusion for emitter 
formation and hydrogenation of the wafer bulk by firing 
of hydrogen-rich SiNx:H layers deposited by plasma 
enhanced chemical vapor deposition (PECVD) average 
lifetime values can be significantly enhanced [1,2]. 
 In contrast, the local effect of the two processes to 
grain boundaries in material with high impurity 
concentration can be different. As grain boundaries are 
heavily decorated by transition metal precipitates that 
dissolve during high temperature processes like e.g. 
POCl3 diffusion and decorate grain boundaries with 
dissolved metal impurities [3,4], the lifetime can be 
locally decreased at grain boundaries after P-gettering 
[5]. Additionally, metal impurities diffusing through the 
crystal during POCl3 diffusion are attracted by grain 
boundaries that act as getter sinks. After such a possible 
decrease of lifetime during POCl3 diffusion, it can be 
increased again by subsequent hydrogenation. The net 
change in minority charge carrier lifetime after the two 
processes can be still positive at some grain boundaries, 
but the improvement can be rather small [5] and differs 
[6]. In prior investigations a possible correlation between 
the coincidence site lattice (CSL) grain boundary type 
and the efficacy of a passivation of the recombination 
activity by H at different CSL grain boundaries was 
indicated [6-12]. The statistics in all of these analyses 
could only be derived from measurements at a small 
number of grain boundaries, because the CSL grain 
boundary types were determined with the microscopic 
analysis method of electron backscatter diffraction 
(EBSD)  
 The current analysis generates a broader statistics by 
using a new tool to analyze the types of nearly all grain 
boundaries on a standard-sized wafer [13]. It is based on 
X-ray Laue scans (Laue X-ray diffraction, Laue XRD) 
performed at optically selected positions. Only one point 

per grain positioned at the most centered region of the 
grain is analyzed. Only grains exceeding the size of the 
500 µm measuring diameter of the X-ray spot are 
investigated. By comparing the grain orientation of 
neighboring grains, the grain boundary types can be 
determined. The correlation of this information with the 
spatially resolved lifetime-calibrated photoluminescence 
(PL) [14-16] images evaluated at grain boundaries of mc-
Si wafers after different processing steps, generates a 
reliable and large statistics of the dependence of lifetime 
values after the different processing steps on the grain 
boundary type. The resolution of the PL images in this 
investigation is 50 µm. In the following, at a grain 
boundary is referred to as the area covered by pixels of a 
PL image that are crossed by a grain boundary. 
 Lifetime contrasts and the interstitial Fe 
concentration [Fei] (based on lifetime-calibrated PL 
images) [17,18] at grain boundaries were determined for 
all samples after all processing steps. 
 
 
2 LIFETIME CONTRAST VALUE 
 
 The difference between PL intensities at a grain 
boundary and the intensity in the neighboring grains 
normalized to the intensity in the grains is usually called 
PL contrast value [8,12]. As in this analysis the PL 
images are lifetime-calibrated, a lifetime contrast value ܥఛ 
is defined analogically: 
 

ఛܥ ൌ
ఛಸಳିఛబ
ఛబ

                               (1) 

 
߬ீ஻ describes a lifetime value at a grain boundary and ߬଴ 
the average value of two intra-grain plateau lifetime 
values ߬଴,௟௘௙௧ and ߬଴,௥௜௚௛௧ positioned on opposite sides of 
a linescan in the lifetime-calibrated PL image crossing 
the analyzed point on the grain boundary. 
 In this investigation contrast values were only 
calculated for grain boundary points, where the absolute 
difference of the two plateau lifetime values normalized 
by ߬଴ was less than 20%. Otherwise no lifetime contrast 
value was determined at these points. The exact 
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procedure of identifying ߬଴,௟௘௙௧ and ߬଴,௥௜௚௛௧ is described 
in [19]. Since contrast values from two or even three PL 
images after different processing steps shall be compared 
in this analysis, the described requirements need to be 
fulfilled by all PL images together at the same position 
on a grain boundary for an indication of lifetime contrast 
values. 
 Note that the lifetime contrast depends on the 
generation rate [12]. In this investigation all PL 
measurements were taken at a generation rate of 
G=1.75·1017 s-1cm-2. 
 
 
3 EXPERIMENT 
 
 Three vertically directly neighboring mc-Si wafers (B 
doped, 1.5 Ωcm, 156x156 mm2, 200 µm) with very 
similar grain structure from mid ingot height of two 
ingots of different solar-grade quality were cut into 
samples of 50x50 mm2. With the expression solar-grade 
we refer here and in the following not to the electronic-
grade quality Si feed-stock, but to the conditions of 
crystallization. The Gen1 sized ingots were produced 
within the research cluster “SolarWinS” under different 
conditions: 
 

- Ingot 1: standard solar-grade crucible for mc-Si 
- Ingot 2: crucible of high purity fused silica plates 

 
 A more detailed description of the properties of the 
ingots can be found in [19]. Ingot 1 and an ingot similar 
to ingot 2 are also characterized in [20]. The three 
neighboring samples of one ingot were arranged in three 
groups distinguished by different processing steps: 
 

- Group A: only P-gettering and emitter removal 
- Group B: POCl3 diffusion with subsequent 

deposition (both surfaces) and firing of PECVD 
SiNx:H layers and terminal removal of those 
layers and the emitter 

- Group C: deposition (both surfaces), firing and 
removal of PECVD SiNx:H layers only 

 
 A process flow of the experiment is shown in Fig. 1. 
The character of most of the grain boundaries of the 
entire area of the samples was analyzed according to the 
procedure described in [13] and [19]. The surface 
passivation with quinhydrone-methanol was performed as 
described in [21-24]. The minority charge carrier lifetime 
of all samples was measured by the quasi-steady state 
photoconductance method (QSSPC) [25], PL images [14] 
with a resolution of 50 µm were taken and lifetime was 
calibrated [15,17,18]. 
 A second lifetime measurement using QSSPC and PL 
was carried out after illuminating the samples until all 
FeB pairs were dissociated as described in [24]. 
 Samples from group A and group B were treated with 
a POCl3 diffusion (50 Ω/□) and a P-glass etch in diluted 
HF(2%). The emitter of samples from group A was taken 
off during a chemical polishing etch removing 5 µm from 
each surface. 
 On both sides of samples from group B and group C 
75 nm thick SiNx:H layers were deposited by PECVD. 
These samples were fired in a belt furnace (peak 
temperature approximately 700°C) to hydrogenate them. 
Afterwards the SiNx:H layers were etched off in 
HF(12.5%) and the emitters of samples from group B 

                
 

Figure 1: Processing of mc-Si samples (B doped, 
1.5 Ωcm, 156x156 mm2, 200 µm). 
 
were removed. From the surfaces of samples from 
group C 1 µm was removed to achieve the same surface 
conditions for all samples. 
 Again lifetime and [Fei] were determined by QSSPC 
and PLI. After cleaning the samples, optical scan images 
of all samples were taken. 
 A computer-supported spatial correlation of all 
lifetime-calibrated PL images of neighboring samples 
was accomplished. Very small deviations of the grain 
boundary positions are possible since for a part of the 
investigation (group A/B) neighboring samples were 
used. 
 As described in section 2, for data points on the grain 
boundaries fulfilling the requested conditions contrast 
values were determined. [Fei] maps were calculated from 
the two lifetime-calibrated PL images before and after 
dissociating FeB pairs by illumination. 
 
 
4 RESULTS 
 
 In Fig. 2 spatially exactly correlated lifetime-
calibrated PL images of a mc-Si sample from ingot 2 as-
cut (top), after P-gettering and both-sided emitter 
removal (center) and a neighboring sample with very 
similar grain structure and very similar as-cut lifetime 
distribution after P-gettering and hydrogenation (bottom) 
are shown. On the left hand side of the images the 
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arithmetic averages of the lifetime values of these three 
lifetime maps are given. Comparing the images after 
POCl3 diffusion and after POCl3 diffusion with 
subsequent hydrogenation shows, that the recombination 
activity at some grain boundaries is strongly reduced 
after firing, while for others it is still high compared to 
bordering grains. This is a further motivation for grain 
boundary type specific investigations of the changes in 
lifetime. 
 In the top image the as-cut lifetimes are correlated 
with the different grain boundary types (colored line grid) 
that were determined from Laue XRD. At some grain 
boundaries the grain boundary type could not be 
determined correctly, because the grain size of the 
adjacent grains was smaller than 500 µm (diameter of the 
X-ray spot) or because the optical determination of the 
grain positions did not work out and the grain boundary 
type calculation was performed with orientations of 
grains without a common grain boundary. The different 
types are marked by different colors. The white frames 
on the colored lines mark positions, where lifetime 
contrasts could be calculated. Random angle (RA) grain 
boundaries cannot be classified as CSL grain boundaries 
and are marked by purple lines. At all these colored 
marks at the grain boundaries in all three lifetime-
calibrated PL images the lifetimes values were analyzed. 
The lifetime statistics for one grain boundary type is 
formed by up to 6000 points. This analysis was 
analogically carried out for the directly neighboring 
sample of group C, which was directly hydrogenated 
without previous POCl3 diffusion. 
 
4.1 Lifetime values at different grain boundary types as-
cut, after P-gettering and/or SiNx:H firing 
 The minority charge carrier lifetime values at 
different grain boundary types in mc-Si samples from 
ingot 1 and 2 are shown in Fig. 3. Results of samples 
from group A/B are presented in subfigures a and b and 
the ones of samples from group C are presented in 
subfigures c and d. 
 Values of different grain boundary types are 
separated by vertical lines into segments in all graphs. 
The box plots in one segment belong to different 
processes. In subfigures a and b the black left box plot 
shows the lifetime value statistics at grain boundaries of 
the particular grain boundary type of the as-cut sample 
(group A). The red center box plot displays lifetime 
values at the according grain boundary type after POCl3 
diffusion of the same sample, the blue right box plot 
gives these values on a neighboring sample after POCl3 
diffusion and hydrogenation (group B). The medians, 25 
and 75 percentiles are marked by horizontal bars, the 
arithmetic average values by black dots. The values in 
brackets on top of the graph show the number of 
analyzed data points per sample for the particular grain 
boundary type. Fig. 2 shows the PL images and grain 
boundaries where the values after different processes 
presented in Fig. 3b were taken from. 
 All lifetime values at grain boundaries after the 
processes in the samples from ingot 2 (Fig. 3b and d) are 
higher than the ones in the samples from ingot 1 (Fig. 3a 
and c). This can be explained by the lower concentration 
of impurities in the whole ingot. To verify this 
assumption, inductively coupled plasma mass 
spectrometry (ICP-MS) [26,27] measurements were 
performed in samples from positions close to the ones the 
lifetime samples were taken from. The results published 

 
 
Figure 2: Spatially correlated lifetime-calibrated PL 
images of mc-Si samples from ingot 2. Top and center: 
same sample after different processing steps (as-cut, top, 
and after POCl3, center). Bottom: directly neighboring 
sample after P-gettering and SiNx:H firing. Average 
lifetime values after different processing steps shown on 
the left hand side. The different grain boundary types are 
marked with different colors in the top image. 
 
in [19] show that the concentrations of nearly all kind of 
impurities are higher in ingot 1 than in ingot 3 at the 
investigated position in the ingots. 
 The median lifetime values of the cleaner samples 
from ingot 3 displayed in Fig. 3b show a clear trend after 
the applied processes for all CSL grain boundary types. 
The as-cut medians are nearly equal for all grain 
boundary types, but the improvements of the lifetime 
medians after the processing steps show a dependence on 
the grain boundary types. 
 The comparison of median lifetime values of grain 
boundaries with different CSL grain boundary types after 
the same processing steps based on broad statistics shows 
that a higher CSL value leads to lower lifetimes. This is 
true both for lifetimes after POCl3 diffusion and after 
POCl3 diffusion and hydrogenation. This fact correlates 
very well with the trend of stronger decoration of grain 
boundaries with metal impurities with higher CSL 
indexes [3]. 
 Data of the only sample that does not completely 
follow this trend is shown in Fig. 3a. Surprisingly, the 
median lifetime values at RA grain boundaries after 
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