Characterization

For characterization of solar cells and lifetime samples a multitude of techniques are available. The list contains some of our capabilities. More detailed information can be found in the links.

 Analytic Techniques for Solar Cells and Precursors

  • determination of electrical parameters (Voc, jsc, FF, η) via (continuous mode) sun simulator or flasher
  • model related analysis of I(V) characteristics (dark, illuminated)
  • determination of spectral response or quantum efficiency  (IQE, EQE) via LOANA
  • determination of spectral reflection und transmission via photospectrometry
  • laterally resolved electro- and pholuminescence (EL, PL) and series resistance mapping (Rs-mapping)
  • laterally resolved detection of heat sources and local short circuits via lock-in thermography (DLIT, ILIT)
  • laterally resolved determination of local short circuit current density and quantum efficiency via laser beam induced current (LBIC) mapping
  • 4 point measurement of specific resistances of base materials, emitters and metallized structures
  • manual and automatic determination of specific contact resistance via transfer line method (TLM)
  • depth resolved measurement of doping profiles via electrochemical capacitance voltage spectroscopy (ECV) 
  • visualization of laterally structured highly doped layers via confocal µ-Raman spectroscopy

Analytic Techniques for Lifetime Samples and Passivation Layers

  • injection-dependent determination of lifetime via static or dynamic photoconductance (QSSPC/PCD) at room temperature
  • injection- and temperature-dependent determination of lifetime via static or dynamic photoconductance (QSSPC/PCD) up to 200°C
  • determination of surface recombination currents of highly doped layers via (QSSPC/PCD)
  • laterally resolved determination of lifetime via static photoluminescence (τ-PL)
  • laterally resolved determination of lifetime via dynamic photoluminescence (TR-PL)
  • laterally resolved determination of lifetime via µ-wave reflectance (µW-PCD)
  • determination of chemical passivation quality by manipulation of field effect passivation via corona charging
  • determination of fixed charge densities in dielectric layers and analysis of field effect passivation via capacitance spectroscopy
  • injection-dependent defect modelling
  • time resolved defect kinetic in FZ, Cz and mc-Si as well as in passivation layers

Supplemetal Analytic Techniques

  • determination of interstitial oxygen concentration in the silicon bulk via infrared transmission spectroscopy (FTIR)
  • composition analysis of dielectric layer via infrared transmission spectroscopy (FTIR)
  • determination of optical properties of dielectric layers via UV/VIS/NIR ellipsometry
  • surface inspection via optical microscopy
  • visualization of grain boundaries and inclusions via infrared transmission microscopy
  • visualization of grain boundaries in mc-Si via reflection mapping
  • determination of crystallinity of a-Si:H layers via confocal µ-Raman spectroscopy
  • visualization of local crystal distortions via confocal µ-Raman spectroscopy
  • surface topography mapping via atomic force microscopy (AFM)
  • surface potential mapping via Kelvin probe force microscopy (conductive AFM)
  • temperature-dependent investigations of electronic transport properties via Hall measurements
  • scanning electron microscopy (SEM) including elemental analysis (EDX)crystal orientation analysis (EBSD) as well as structuring by focused ion beam (FIB)
  • transmission electron microscopy (TEM)